nl en

Categorical Data Analysis


Entry requirements

Master’s students Psychology with specialisation Methodology and Statistics and research master’s students Psychology.


In this course the focus will be on the analysis of categorical data. The course starts with basic theory on contingency tables and distributions for categorical data. Then from the general framework of Generalized Linear Models special cases are developed like logistic regression, multinomial logistic regression and log-linear models. Software, model selection and interpretation will be discussed for the models.
After this introduction attention shifts to models for longitudinal categorical data, where we distinguish between marginal, transitional and subject specific models.

Course objectives

On completion of the course students have knowledge on:

  • the theory of Generalized Linear Models

  • logistic regression and how to apply it in empirical data analysis

  • generalizations of logistic regression for ordinal and nominal response categories

  • loglinear models for the analysis of contingency tables

  • the SPSS software modules for analyzing categorical data

  • extensions of generalized linear models for clustered data.


For the timetables of your lectures, work groups and exams, please select your study programme in:
Psychology timetables



Students need to enroll for lectures and work group sessions.
Master’s course registration


Students are not automatically enrolled for an examination. They can register via uSis from 100 to 10 calendar days before the date. Students who are not registered will not be permitted to take the examination.
Registering for exams

Mode of instruction

The course consists of 7 2-hour lectures and 2 2-hour computerlab meetings.

Assessment method

Two graded assignments and a written exam. The final grade is the average of the 3 grades obtained.

The Faculty of Social and Behavioural Sciences has instituted that instructors use a software programme for the systematic detection of plagiarism in students’ written work. In case of fraud disciplinary actions will be taken. Please see the information concerning fraud.

Reading list

Agresti, A. (2007). An introduction to categorical data analyis (Second Edition). Wiley.

Contact information

Dr. Renske Kuijpers