nl en

Exo-planets: Interiors and Atmospheres


Admission requirements

Knowledge on radiative processes and stellar structure. Basic programming skills.


We are in a unique time to study planets. Not only do we have space missions such as Cassini and Juno, which have led to a radical change in our knowledge of the giants in our solar system, but we also have an astonishing number of more than 4000 exoplanets that have been discovered in the last three decades. Each new exoplanet highlights a stunning diversity and impacts the perception and understanding of our own solar system. This course will provide an overview of our current theoretical understanding of the physical and chemical processes that occur in planets interiors and their atmospheres. This understanding is crucial to interpret observations, and to know where the field is moving for the developing of future instrumentation.

The detailed outline is:

  • Radiative transfer in (exo)planet atmospheres

  • Chemistry in (exo)planet atmospheres

  • Principles of fluid dynamics and applications to circulation in atmospheres

  • Interaction between the planets and the host star: atmospheric escape

  • Interiors or rocky planets

  • Interiors of giant planets: inflation in hot-Jupiters

  • Interactions between interiors and atmospheres: surface, ocean and volcanoes

  • The concept of habitability

Course objectives

Upon completion of this course, you will be able to:

  • Distinguish the main physical and chemical processes that shape the atmospheres and interiors of (exo)planets.

  • Discuss and follow current literature in exoplanets

  • Use state-of-the-art codes to model exoplanets interiors and atmospheres

  • Name the main uncertainties in the current knowledge of Exoplanet interiors and atmospheres

  • Identify synergies between our Solar system and Exoplanets

Soft skills

  • Oral and writing communication (presenting, speaking, listening, writing)

  • Critical thinking (asking questions, check assumptions)

  • Creative thinking (resourcefulness, curiosity, thinking out of the box)


See Astronomy master schedules

Mode of instruction

Weekly lectures, and bi-weekly tutorial sessions. During the lectures there will be an introduction to the topic and basic physics followed by a discussion of relevant papers on the topic presented by the students and debates on this. During the tutorial sessions, students will use open source codes used in exoplanet research to solve different problems.

Assessment method

Presentation of papers and debates during the lectures (20%), tutorial essay (30%) and final project (50%)


Brightspace will be used to communicate with students and to share lecture slides, homework assignments, and any extra materials. To have access, you need a student ULCN account.

Reading list

  • Principles of Planetary Climate - Ray Pierrehumbert Exoplanet Atmospheres - Sara Seager

  • Papers selected during the classes


Via uSis. More information about signing up for your classes can be found here. Exchange and Study Abroad students, please see the Prospective students website for information on how to apply.

Contact information

Lecturer: Dr. Y. Miguel
Assistants: Ypeng Zhang, Mantas Zilinskas, Christiaan van Buchem