## Admission Requirements

Introduction to Solid State Physics

## Description

This course is a first step towards quantum many body physics, band structures, and emergent quasiparticles.

In this course you learn how electrons in solids can be described by simple but highly successful models. After a brief introduction into the phenomenology, we will start to work with and solve model Hamiltonians to describe quantized vibrations and electrons in the periodic potential in solids. You will be introduced to the concept of quasiparticles. You will learn to qualitatively and quantitatively descripe important properties of electrons and quantized vibrations in periodic potentials, and get quantities such as the energy spectra, the conductivity etc. Later, we will apply these techniques to describe semiconductors, magnets, and superconductors.

The class is recommended especially if you want to pursue experimental or theoretical condensed matter physics.

## Course objectives

The main objective is to be able to describe quantized vibrations and electrons in solids using (model) Hamiltonians and solve them.

After this class, you will be able to

Derive the spectrum of quantized lattice vibrations for simple crystalline solids with regards to macroscopic properties

Derive the spectrum of electrons in simple crystalline solids and interpret the result with regards to macroscopic properties

Explain the concept of a Brillouin zone, and be able to explain why it is valuable to describe solids.

Draw band structures for one dimensional solids

Derive the band structure in simple one-dimensional chains both in the nearly free electron and tight binding model; be able to explain the difference

Name the key phenomenological properties of semiconductors and connect them to microscopic models

Name models to describe the key properties of magnets, and explain where they are useful

Describe the basic phenomenology of superconductors

## Transferable skills

You use books in addition to the weblectures and exercises to achieve the learning objectives.

## Timetable

Schedule

For detailed information go to Timetable in Brightspace

## Mode of instruction

See Brightspace

## Course load

6EC; 13 weeks of 3 hours of lectures and/or problem/discussion sessions; question session and written exam: 2+3=5 hours; selfstudy (homework, studying textbook and other literature, viewing weblectures, working out problems, study for exam): 124 hours.

## Assessment method

Written examination.

## Brightspace

Registration for Brightspace occurs via uSis by registration for a class activity using a class number

## Reading list

For most of the course, we will follow the book “The Oxford Solid State Basics” by Steven H. Simon (Oxford University Press, 2016). The library has unlimited electronic copies.

## Contact

Contact Details Lecturer:Dr.Peter Denteneer