## Admission requirements

Basic probability and statistics, a good notion of regression models and familiarity with R

## Description

The course provides a basic introduction to Bayesian forms of inference. The concept of Bayesian belief updating is explained, with reference to Bayes theorem. The notions of prior and posterior density are discussed, as well as concepts and issues relating to prior belief specification. Basic forms and examples of Bayesian belief updating in both univariate and multivariate parameter problems are explained in detail, in particular with respect to the exponential family and basic linear regression models. Examples are discussed as well as applications of Bayesian concepts in approximate (non-Bayesian) forms of inference. We also introduce basic notions of Bayesian computation and apply these methods in examples and exercises. We introduce and discuss some key applications of Bayesian approaches to inference from the statistical literature.

## Course Objectives

You understand the basic concepts of Bayesian inference and are able to recognize these in documented statistical analyses materials. You are able to apply basic methods of Bayesian inference in simple (data-based) examples. You are able to interpret output and formulated results (conclusions) from applications of Bayesian analyses. You are able to critically evaluate basic applications of Bayesian analysis in simple examples and problem settings.

## Timetable

The schedule for the course can be found on MyTimeTable

## Mode of instruction

The course makes use of lectures, exercises, homework, discussions and computer sessions.

## Assessment method

Written examination at end of the course.

## Reading list

There is no specific book required.

The course lectures are much inspired by the structure presented in “Bayesian Biostatistics” (Lesaffre and Lawson, Wiley). We will particularly use many of the examples discussed in that book. Referencing the book can therefore be useful to understand these better. Material from other sources will be added to the course as required.

Many other good introductory textbooks exist for Bayesian statistics which are regarded as standard references in the field. Some students may also prefer these because of the different writing styles used in those texts. Two additional references stand out among others:

Bayesian Data Analysis by Gelman, Carlin, Stern and Rubin (an absolute classic);

Bayesian Methods for Data Analysis by Carlin and Louis (again a classic, but includes more links to “frequentist thinking” and the so-called “empirical Bayes” approach – in addition discusses some key application areas and case studies in detail ) Note this is the third edition: the first two editions have a different title: “Bayesian methods for Data Analysis and Empirical Bayes Methods for Data Analysis”;

Finally, for an excellent hands-on discussion of practical use of the Bayesian idea in evaluation of hypotheses in observational and trials data generally, Bayesian Approaches to Clinical Trials and Health-Care Evaluation by Spiegelhalter, Abrams and Myles is recommended reading.

## Registration

From the academic year 2022-2023 on every student has to register for courses with the new enrollment tool MyStudyMap. There are two registration periods per year: registration for the fall semester opens in July and registration for the spring semester opens in December. Please see this page for more information.

Please note that it is compulsory to both preregister and confirm your participation for every exam and retake. Not being registered for a course means that you are not allowed to participate in the final exam of the course. Confirming your exam participation is possible until ten days before the exam.

Extensive FAQ's on MyStudymap can be found here.

## Contact

b.mertens@lumc.nl

## Remarks

--